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Introduction 
 

Le Conte’s Thrasher (Toxostoma lecontei; LCTH) is an uncommon desert species associated with 

hot and dry climates throughout the southwestern United States. Its range is contiguous 

throughout the Mojave and Sonoran desert portions of Arizona, Nevada, Utah, and California 

except for a disjunct population found in California’s San Joaquin Valley. This population, whose 

range partially overlaps with the Carrizo Plain National Monument (CPNM), has been described 

as a sub-species (T. l. macmillanorum), but this distinction has not been widely recognized 

(Sheppard 1996). This population has, however, been recognized as a California Bird Species of 

Special Concern (Shuford and Gardali 2008) due to greatly reduced range and population size, 

high endemism, and habitat loss and degradation (Fitton 2008). 

This project was initiated in 2010. In 2010-2011, monitoring methods were tested and refined 

and 120 area search survey plots (250m x 250m, approximating the size of a LCTH territory) 

were established within the CPNM (Jongsomjit et al. 2013).  We continued to survey these plots 

in 2012 and 2013.  

Habitat characteristics can be useful for various spatially explicit management applications.  In 

the case of the Carrizo Plain, we used a habitat suitability model to help guide the placement of 

new survey sites (Jongsomjit et al. 2012).  This model was based on presence-only information 

and a GIS layer provided by the BLM delineating vegetation types at a relatively large scale.  

However, our surveys and previous research indicates that Le Conte’s thrashers respond to 

vegetation types and variables at a small scale, including the percent cover of shrubs and the 

availability of open ground. Accordingly, in our report we recommended that improved 

vegetation maps be produced that included this type of information.   Recently, the California 

Native Plant Society (CNPS) completed a comprehensive vegetation survey of the CPNM.  The 

result of this work was a fine scale vegetation GIS layer that includes information on tree, 

shrub, and herb cover, vegetation alliance (56 types), as well as heterogeneity and disturbance 

measures (Buck-Diaz and Evens 2011).  While some potentially important vegetation 

characteristics were not measured by this effort (such as shrub height), this layer is a 

considerable improvement over the previous layer. 

The development of a geospatial population model, showing species distribution across the 

study area and potential abundance, may be possible using the improved vegetation layer 

developed by the CNPS.  A geospatial abundance model would use Le Conte’s thrashers count 

and detection data, providing a more informed map of greater conservation value of the 

potential distribution of LCTH within the CPNM and beyond.  This type of data can be used to 

prioritize or identify management, conservation, or restoration actions. For example, species 



2 
 

population targets can be calculated at different scales and used to guide, prioritize, and 

evaluate management actions.  

In this second phase of our study of Le Conte’s Thrasher, we analyzed all three years of data 

using imperfect detection models of occupancy and abundance (the “site-level models”), and 

then used these results to train a geospatial population model (the “landscape-level model”) of 

presence and abundance for the species in the CPNM. We present the results of both these 

analyses, identify areas for improvement of our understanding of the species locally and at 

landscape levels, and provide recommendations for management action. 

  



3 
 

Site-Level Models 
Our goal was to create a site-level abundance model that could then be used to inform a 

landscape-level abundance model across the CPNM.  In order to create the site-level 

abundance model we first had to take into account that some individuals would go undetected 

during our surveys due to low detection probabilities (imperfect detection) which in turn could 

lead to biased models of abundance.  

The site-level models are the imperfect detection models. We fit a model to estimate the 

occupancy of Le Conte’s Thrasher in our data, and a model to estimate the abundance. Both 

include correction for imperfect detection, which is possible to estimate if there are repeated 

surveys at the same location. For example, in repeated visits to a site LCTH detection may be 0 

in some visits and 1 in others. If we assume the population is closed (i.e., no immigrations or 

emigrations, births or deaths), we must assume the site is clearly occupied and the survey 

events when a bird was not recorded must be solely due to imperfect detection. That is, the 

variation in detection events throughout the repeated visits to the site informs a probability of 

detection. The same logic applies to the abundance models, except that now probability of 

detection is inferred from the variation in the total number of birds detected throughout the 

visits. Notably, a site with 0 detections may be occupied, because birds there may be difficult to 

detect. Further, a site that has a detection of one individual may indeed host more than one 

individual, such that the count of one bird is the result of the true abundance with imperfect 

detection. 

The imperfect detection models thus include two functions. One function fits the best estimate 

of the probability of detection, and the other fits the abundance or occupancy. These are fit 

simultaneously and each has its own set of covariates, which we discuss below. The statistical 

procedure seeks to find the set of covariate coefficients such that the predicted 

abundance/occupancy, corrected for imperfect detection, fits the observed data as best as 

possible. Because the functions are fit simultaneously, there may be several competing top 

models, all fitting the data approximately equally.  

Models were fit using package “unmarked” (Fiske et al.  2014) in the programming language “R” 

(R Core Team 2014). 

 

Site-Level Covariates 

Area searches were conducted within 250m x 250 plots, an approximation of a LCTH territory 

size. During each area search, surveyors conducted vegetation releves recording various 

measurements characterizing the plot.  Some of these measurements were chosen a priori as 

variables hypothesized to be important to the occurrence of LCTH and were used to develop 
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the site-level imperfect detection and occupancy models.  Variables included linear and 

quadratic forms of: percent Atriplex polycarpa cover (common saltbush), percent Ephedra 

californica cover, percent bare ground,  percent grass cover, and percent total shrub cover. 

These were considered for both the detection and the abundance/occupancy functions at the 

site level. 

 

Site-Level Imperfect Detection and Abundance Model 

We evaluated all possible combinations of the covariates, resulting in evaluation of 1,048,576 

models. We considered all models within 2 Akaike Information Criterion units of the top model 

and reviewed these to determine the one that made the most biological sense. For example, 

the top abundance model included common saltbush for detection (linear and quadratic), and 

only amount of bare ground for the abundance or occupancy function. However, we know that 

the presence of shrubs is important for the species. Competing models included Ephedra 

californica cover, or just the percent total shrubs, so we opted to include the effect of total 

shrub cover, as it increase the likelihood of the model fit, even if not enough to outweigh the 

(Akaike) penalty for including an additional variable in the model. 

Regarding the abundance model, we also realized that abundance was the most important 

predictor of occupancy. So, we opted to take advantage of this relationship and conservatively 

estimate abundance using the approach suggested by Royle and Nichols (2003). 

 

Site-Level Results 

Our top model estimated counts of 0.09 to as many as 5.54 birds per plot, though the median 

(see Figure 1) is 0.72 and the mean is 1.07. Coefficient estimates are shown in Table 1. Note 

how percent shrub cover does not significantly add to the explanation of the variance in the 

data. The difference in the log-likelihood of the model with and without that variable was 0.2 (-

177.4 vs. -177.2), which resulted in a difference in AIC value of 1.6, thus making it a top 

competing model (Burnham and Anderson 2002).  
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Table 1. Top model coefficient estimates. 

Parameter Estimate SE z P(>|z|) 

(Intercept abundance) -1.790 0.740 -2.417 0.016 

% bare grounds 0.040 0.009 4.495 0.000 

% shrub cover -0.009 0.013 -0.657 0.511 

(Intercept detection) -3.128 0.452 -6.919 0.000 

% cover Saltbush 0.192 0.049 3.916 0.000 

% cover Saltbush^2 -0.005 0.002 -3.165 0.002 
 

 

Figure 1. Frequency of abundance of LCTH per plot, as estimated by the site-level model. 

 

We also evaluated the goodness of fit of the model. Unlike conventional generalized linear 

models, hierarchical mixed-effect models such as ours cannot be readily evaluated through 

metrics pertaining to amount of variance explained. This is because abundance and detection 

coefficients are co-dependent on each other. But it is possible to use a procedure that samples 

from the posterior distribution of the model coefficients and uses the observed data to predict 

values and calculate a metric (e.g., the squared sum of error, SSE), and compare this metric 

against the same metric estimated directly from the data. A good model fit should result with 

most predicted values for the metric surrounding the observed value. Figure 2 shows the 

results for our choice of top model, evidencing an excellent model fit. 
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Figure 2. Test of goodness of fit for the site-level imperfect detection model. The blue dotted line indicates the 

observed sum of squared errors in the dataset; the gray bars reflect the frequency of SSE values in 100 bootstrap 

simulations. 

 

Figure 3 shows how abundance (A & B) and probability of detection (C) relate to the predictor 

covariates. The curves span the value of the covariates in the dataset. LCTH is more abundant in 

areas with high percentage of bare grounds, yet not entirely denuded of vegetation. The 

species seems to like areas clear of brush but only to some extent. It likes low but not entirely 

missing, shrub cover. Note that our data does not include samples with values of 90% or higher 

bare ground cover, or > 70% shrub cover. These limits are of great consequence for the 

landscape-level model, because there will be areas in the landscape whose % bare ground 

cover and % shrub cover exceed these limits in the data, and the model will likely over-predict 

the abundance of LCTH in these locations. 

The relationship of detectability with % saltbush cover is depicted in Figure 3 C. Note that 

detection seems to increase as % saltbush cover approximates 30% and remains high 

thereafter. However, though saltbush helps detect the species, at high levels of % cover the 

species becomes less and less abundant. 
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      A      B 

 

C 

 

Figure 3. Partial dependence plots of abundance (A & B) and probability of detection (C) covariates for the top 

model. 
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Landscape Level Models 
 

Landscape-Level Covariates 

We developed several landscape variables that we considered could help determine LCTH 

distribution and abundance within the study area (Table 2).  These included both geophysical 

and vegetation based variables, with the vegetation variables based off of the CNPS Vegetation 

Map layer (Stout et al. 2013) (Figure 4). 

The CNPS layer was developed using a combination of extensive ground surveys and aerial 

images to produce a fine-scale vegetation map which included tree, shrub and herb cover 

classes, and the identification of over 50 vegetation types.  We selected potentially important 

vegetation types by identifying which types occurred within our survey plots.  We then 

developed landscape level metrics with this reduced set of vegetation types using the 

programs ArcMap v10.1 (ESRI 2012) and Fragstats v4.2 (McGarical et al. 2012).  Because 

vegetation cover classes were defined by a set range of values, we first converted the ranges 

to equal the median value of the range. For example, a homogeneously-defined range of 20-

30% cover was converted to equal 25% cover.  
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Figure 4. Map of vegetation types identified by the California Native Plant Society within the Carrizo Plain 

National Monument boundary. 
 

Mean values of each covariate were defined by taking the average value of all raster cells within 

a given area search plot.  We also ran a moving window analysis that returned the proportion of 

each vegetation type within 375 m of a given raster cell.  These results were then summarized 

by taking the average value within a given area search plot. 
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Table 2. Variables considered in the landscape boosted regression tree models.  Variables were summarized within 
each 250m x 250m cell across the landscape 

Variable Definition Source 

Percent Atriplex polycarpa Mean proportion of vegetation type 
within a 375m moving window.   

CNPS Vegetation Layer 

Percent Ephedra californica Mean proportion of vegetation type 
within a 375m moving window.   

CNPS Vegetation Layer 

Percent California Annual and 
Perennial Grassland Macrogroup 

Mean proportion of vegetation type 
within a 375m moving window.   

CNPS Vegetation Layer 

Percent Lasthenia californica - 
Plantago erecta - Vulpia 
microstachys 

Mean proportion of vegetation type 
within a 375m moving window. 

CNPS Vegetation Layer 

Percent Ericameria linearifolia - 
Isomeris arborea 

Mean proportion of vegetation type 
within a 375m moving window.   

CNPS Vegetation Layer 

Aspect  Mean aspect in degrees  USGS National Elevation Dataset 
Slope Mean slope in degrees  USGS National Elevation Dataset 
Stream distance Total sum of the distance to nearest 

stream or creek 
National Hydrography Dataset 

Mean shrub cover Mean shrub cover CNPS Vegetation Layer 
Mean shrub cover landscape Mean shrub cover within a 375m 

moving window 
 

Mean herb cover Mean herb cover within a 375m 
moving window 

CNPS Vegetation Layer 

 

Landscape-Level Abundance Models 

Using the values from the site level imperfect detection and occupancy model described above, 

we first fit boosted regression tree (BRT; Elith et al. 2008) models using the landscape 

covariates as potential predictors to estimate species abundance for each 250m cell in the 

landscape.  In basic terms, BRTs work by fitting an ensemble of models (trees) in succession 

with each successive model built for the variation in the response that is not yet explained by 

all previous fits.  The final model combines the results of all the trees. BRTs have been shown to 

have better predictive performance than other statistical model algorithms (Caruana and 

Niculescu 2006, Elith and Graham 2009, Hastie et al. 2009) and they can incorporate non-linear 

responses and interactions between covariates.  

We applied a threshold value to the resulting BRT model to define where a LCTH could be 

present (above the threshold value) or absent (below the threshold value). This threshold value 

could be decided in several ways and can be guided by user objectives (Liu et al. 2005, Freemen 

and Moisen 2008).  For example, a threshold can be based on minimizing errors that identify a 

species to be present when it is actually absent.  Or a threshold can be based on trying to 

minimize both commission (predict presence when in reality it is not present) and omission 

errors (predict not present when it is).  Since we were interested in identifying suitable habitat 

and potentially setting population targets within the Monument we decided to base our 
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threshold on a target population density of 2 pairs per hectare.  This is the minimum historic 

density identified in the Birds of North America species account (Sheppard 1996). Thus, our 

algorithm could be described as follows: sort all cells in descending order of LCTH abundance, 

add one cell at the time, starting with the highest count cell, until the sum of counts divided by 

the study area results in 2 pairs/hectare. We opted to use the area of the monument (1,050 

km2) to estimate the density: we determined the count of birds per cell below which the 

species was not included as present so that the sum of counts in cells above this value results in 

the reported density. However, the density estimate in Sheppard (1996) is without description 

to the study area to which it applies. 

We tested several combinations of BRT models with different learning rates of 0.01, 0.005, and 

0.001 (determines the contribution of each tree added to the model) and different tree 

complexities of 1 to 5 (determines the interaction order in the response) with the aim of 

minimizing the predictive deviance while still achieving at least 1000 trees (Elith et al. 2008).  

The final model was built with a learning rate of 0.001 and a tree complexity of 2 using a 

Gaussian link function and was evaluated with a 10-fold cross-validation 

 

Landscape-Level Results 

Model predictive performance results are shown in Table 2.  We projected our model results 

onto environmental variable grid surfaces to produce a map across the Monument (Fig 5). 

However, we caution that the point-level model evaluation indicates poor understanding of 

areas where the species is not present, because of the biased selection of survey locations. This 

causes the landscape-level to over-predict. We therefore strongly suggest that the results 

reported here should be seen as an index of relative abundance rather than actual abundance. 

In general, LCTH were predicted to occur within the distribution map polygons developed in the 

Bird Species of Special Concern (BSSC) account with some differences.  For example, our model 

predicted LCTH to occur north and southwest of the largest primary distribution polygon, areas 

where we have indeed detected LCTH. The model also predicted LCTH to occur northeast of the 

primary polygon along the steeper slopes of the Temblor range.  This is an area that has not 

been well surveyed (see discussion).  Our model predicts thrashers will occur along the 

southeastern edge of the Caliente range.  A smaller secondary distribution polygon covers part 

of this area but we have not surveyed it or the areas surrounding it.  However, personal 

communication with the BSSC account author confirms that LCTH have been detected by him in 

this area before. Lastly, our model predicts LCTH to occur on the western slopes of the Caliente 

range.  Part of this area is covered by a historic range polygon, but most of it is not identified by 

the BSSC range map. 
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Table 3.  Model predictive performance cross-validation statistics.  Values are calculated at each fold (10x) then 
averaged across all 10 folds to produce a mean and standard error value. 

Mean deviance (Std. Error) 0.698 (0.05) 
Mean correlation (Std. Error) 0.437 (0.05) 

 

Table 3 shows the results of 10-fold cross-validation of the landscape-level model. These are 

intended to show high heterogeneity in the data (mean correlation), and yet relatively high 

deviance (estimated with the sample left out for testing, averaged across all bootstraps). 

Results suggest that the model may require better training by collecting more estimates from a 

wider range of habitat conditions within the CPNM. This result also evidences the lack of proper 

training in areas where the LCTH is not found, and this limitation may lead to over-predicting 

LCTH abundance in the landscape. 

 
Figure 5. The landscape level abundance model for Le Conte’s Thrasher projected onto the mapped covariate 
grids.  Darker areas represent higher projected abundance values.  Yellow areas indicate a predicted abundance of 
zero after application of the density threshold. 

 

In our landscape abundance model, aspect was the most influential covariate (Figure 6).  This 

was followed by the mean proportion of Ephedra californica and Atriplex polycarpa. Total 
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stream distance and mean proportion of annual/perennial grassland were the next two most 

influential variables, each accounting for over 10% relative contribution to the model. In 

general, abundance was positively correlated with aspect values above approximately 150 

degrees (west facing slopes) then began to decline again after about 240 degrees. Abundance 

was positively correlated with increasing proportion of Ephedra. Abundance was also positively 

correlated with lower proportions of Atriplex californica and began to decline above 

approximately 15% cover. 

 

Figure 6. Fitted function graphs of the top eight variables used the the landscape level abundance models for 
Le Conte’s Thrasher. Numeric values in parenthesis represent the relative importance of the given variable for 
this model (out of a total of 100%).  Dotted lines represent the smoothed version of the fitted function. Blue 
dots represent values in the training set; orange dots represent values for which the model was not trained. 
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Figure 6 also shows that the observational data were collected in such manner that they 

sampled well the environmental conditions of the CPNM. Exceptions may include high values 

of total distance to streams, or mean slope. These results further suggest that over-prediction 

may be solely due to incomplete characterization of the conditions where the species is not 

present. 
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Discussion 
Our landscape level abundance models provide an improved map of the potential distribution 

of Le Conte’s Thrashers compared to the habitat suitability model produced in 2010. 

The habitat suitability model used presence locations only and was informed by a coarse 

vegetation layer of habitat types. In contrast, the abundance model uses LCTH count data, 

corrected for imperfect detection, and is informed by a richer vegetation data layer (including 

shrub and herb cover) at a relatively high spatial resolution.  However, there are several caveats 

that should be taken into account when interpreting the model results.  First, our area search 

surveys have always targeted potential LCTH habitat and the model therefore lacks information 

on where LCTH are not in the landscape (e.g. unsuitable habitat).  Therefore, the model may 

over-predict onto areas where thrashers may not persist.  On the other hand, our model does 

not take into account factors besides suitable habitat that may be impacting the LCTH 

population.  For example, historic and continuing habitat fragmentation may lead to artificially 

reduced numbers due to isolation of sub-populations within the San Joaquin valley (Fitton 

2008).  Thus, while our model may correctly be identifying suitable habitat, LCTH may be 

restricted by other factors unaccounted for in our models. 

Because our plots did not cover entire territories and because they were focused only on 

potentially suitable habitat, the partial dependency plots do not reflect the actual needs of an 

individual or pair. Rather, they reflect the best fit of the data to the covariates.  Thus, they can 

provide useful information on the relationship between LCTH abundance and the 

environmental covariates but should not be used to provide strict guidelines for habitat 

management. 

To improve our picture of LCTH distributions and abundance within the Monument we would 

recommend surveying plots outside of what is identified as suitable habitat.  This would 

confirm that LCTH do not actually occur here and would provide our models with a more 

accurate picture of what may be defining suitable habitat.  Areas to focus on may include more 

western sections of the Carrizo plain and the eastern slopes of the Caliente range, although the 

lack of roads and access to these areas may restrict our ability to survey them.  The steeper 

upper slopes of the Temblor range are identified as potentially suitable habitat with some 

higher index of abundance values.  We conducted a limited amount of surveys in this area in 

2010 and did not find any LCTH.  Given the model results, there is ample justification to return 

to these areas and confirm that LCTH are present or absent. 
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Recommendations 
• Target priority areas for conservation based on high density areas identified by models 

(improvement over presence-only based model) 

• Manage for LCTH-friendly habitat features using general guidance as identified in this 

project: 

• % ground cover 

• % shrub cover in general 

• % Atriplex polycarpa and Ephedra californica cover 

• Manage areas with lower density projections to match areas with higher density 

projections 

• Use model results to conserve areas outside the CPNM for the San Joaquin population 

• Habitat features 

• Target areas for conservation and connectivity 

Potential next steps 

• Validate the model: Survey high density areas not previously included in our sampling 

• Improve area search surveys to estimate trends and set management targets based on 

trends 

• Survey fully randomized plots with respect to relevant density and detection covariates 

• Survey fully randomized plots with respect to relevant landscape-level covariates 

• Evaluate models at different plot sizes (e.g. LCTH territory sizes) 
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